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Concepts & definitions

A lattice in R" is a free Z-module of rank n.

Better yet: a lattice L is a subgroup of n-dimensional space such that

n
L= {Za,—b,- s a; ez} = L(by,...,bn)
i=1

where the b; are linearly independent and form the basis of the lattice.

In other words, L is “almost” a vector space on R”, except with
coefficients limited to Z.
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Lattice basics

Concepts & definitions

@ Lattices form tilings, diving R" into infinitely many copies of its
fundamental region

@ The basis of a lattice is not unique; however, the volume vol(L) of its
fundamental region is independent of choice of basis

@ Also independent of basis is the determinant of the lattice,
det(L) =vol(L)?

3/ 20

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011



Lattice basics

Typical problems on lattices

Given a basis by, ..., b, for an n-dimensional lattice L...

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 4 /20



Lattice basics

Typical problems on lattices

Given a basis by, ..., b, for an n-dimensional lattice L...

@ Closest Vector Problem (CVP): given a target t € R”, find € L
closest to t

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 4 /20



Lattice basics

Typical problems on lattices

Given a basis by, ..., b, for an n-dimensional lattice L...
@ Closest Vector Problem (CVP): given a target t € R”, find € L
closest to t

@ Shortest Vector Problem (SVP): find the ¢ € L of minimum, non-zero
length

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 4 /20



Lattice basics

Typical problems on lattices

Given a basis by, ..., b, for an n-dimensional lattice L...
@ Closest Vector Problem (CVP): given a target t € R”, find € L
closest to t

@ Shortest Vector Problem (SVP): find the ¢ € L of minimum, non-zero
length

@ Shortest Independent Vector Problem (SIVP): find n linearly
independent ¢; € L with the smallest max; || ;||
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Lattice basics

Typical problems on lattices

o (Ajtai, 1996)
the SVP is provably NP-Hard

o (Aharonov & Regev, 2005)
approximating the SVP is in NP N co-NP

o (Ajtai & Dwork, 1997)
the SVP is used to construct cryptosystems with
worst-case/average-case equivalence

@ (Lenstra, Lenstra, & Lovasz, 1982)
the LLL algorithm can be used as an approximation algorithm for
solving the SVP within a factor of 29(") in polynomial time
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Gram-Schmidt orthogonalization

A review of linear algebra

Given a basis by, ..., b,, we inductively define

(bi, b))

i—1
b;|< = b,‘ - ZMinjv where Hij = 7<b* b*>
j=1 37
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Gram-Schmidt orthogonalization

A review of linear algebra

Given a basis by, ..., b,, we inductively define
i—1
* . <b/7 b*>
b; = b; — Z/,l,-?jbj, where p;j = W
J:]_ J J

So for instance:
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Gram-Schmidt orthogonalization

A review of linear algebra

Given a basis by, ..., b,, we inductively define

i—1
b;, b?
by = b; — Z/ru.jbff where pj; = <<b:<bj*>>
‘= IR

So for instance:

b = by
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Gram-Schmidt orthogonalization

A review of linear algebra

Given a basis by, ..., bp, we inductively define

i—1
bi, b?
bi = b; — Z,l,-_jbj, where puij = <<bl bj’f>>
= 77

So for instance:

bt = by

* <b27b>1k> *

by = by — 2L

? (b}, by)

* <b37b>2k> * <b37bi<> *
by = b3 — —5-by — b
3 <b2’b2> 2 < 17b1> !
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Gram-Schmidt orthogonalization

A review of linear algebra

Given a basis by, ..., b,, we inductively define
i—1
b;, b*
by = b; — Z/,z,-_jbf, where pjj = <<b¥? bj*>>
j=1 J J
So for instance:
by = by
* <b27b:>|_k> *
b5 = by — b
SRR N e
* <b37b>2k> * <b37bi<> *
by = bz — by — b
’ (b3, b3) 2 (b, bT) '

Orthogonal basis 1
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Hadamard's inequality

Theorem (Hadamard)

For an n-dimensional lattice L with basis vectors by, ..., b, and
determinant d(L),

d(L) < H|b,~|.
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Hadamard's inequality

Theorem (Hadamard)

For an n-dimensional lattice L with basis vectors by, ..., b, and
determinant d(L),

d(L) < H|b,-y.

If the basis is orthogonal, say by, ..., b}, then this becomes the equality

n

d(L) = T 181

i=1

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 7 /20



The LLL algorithm

Two LLL conditions

1
A)|,u,-d-|§§ for1<j<i<n
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3 .
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The LLL algorithm

Two LLL conditions

1
A)|,u,-d-|§§ for1<j<i<n
3.,
B) |bf + pii_1bf 4]* > Z]b}';lF for1<i<n

* 3 *
B) |b}|* > (Z - /f‘%,i—l)|bi—1|2

— Recall that the triangle inequality implies:

|bf [ + |pii—1bi 1 > |bF + pii—1bi [
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The LLL algorithm

Two LLL conditions
1 .
A)|,u,-d-|§§ for1<j<i<n
3.
B) |bf + pii_1bf 4]* > Z]b}';lF for1<i<n

* 3 *
B) |b}|* > (Z - /f‘%,i—l)|bi—1|2

— [Micciancio, 2010] The % factor may be replaced by § € (%, 1)
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The LLL algorithm

Main theorem

Theorem (Lenstra, Lenstra, Lovasz)

A lattice with basis vectors by, . .., b, satisfying both conditions (A) and
(B) has the following properties:

o d(L) < []Ibil <2+ - d(L)
i=1

n—1
° |bi| <27 -|x

, for all non-zero vectors x € L
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(B) has the following properties:

o d(L) < []Ibil <2+ - d(L)
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

n(n—1)

@ d(L) < [[iLy |bil <27+ - d(L)
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

n(n—1)

O d(L) < [, |bi| <27 -d(L)
The LHS is the Hadamard inequality.
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The LLL algorithm

Proof of main theorem
(A) |pijl <3, 1<j<i<n (B) |b:> > (3 — 12, )b, ?

@ d(L) < [I7, b <2 -d(L)
The RHS is from the two LLL conditions. Taken together,

1
572 2 5162
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

@ d(L) < [0, b < 2™ - d(L)
Thus, by induction

|bf|? < 27H|bf?, for i > .
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

@ d(L) < [0, b < 2™ - d(L)
Thus, by induction

|bf|? < 27H|bf?, for i > .
Now Gram-Schmidt gives

i1
* 1 —j | %
|bif* < |bi|2+212' J|br 2
=
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

n(n—1)

@ d(L) < [[iLy |bil <27+ - d(L)

i—1 i—1
|bi|2§|bi|2—l—zl42' i = |brP? 1+4;21
J= J=
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?
n(n—1)
@ d(L) < [I7y b <277 -d(L)
i—11 o 1i—1 )
B> < [BP 4+ g2t = (B 14 gD 2
j=1 j=1
12 -1 1. .
_ *|2 - _ _ *|2 - i
= |b}] <1+4[2_1 1]) | b} | <1+4[2 2]>
S2i—1_’b;_k|2
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The LLL algorithm

Proof of main theorem

(A) lpigl <3, 1<j<i<n (B) b} = (3 — w7 ;_1)Ib} 4l

@ d(L) < [I% b <27 -d(1)
With |b;|> <2771 |b|? and |b;| < 27 . |b}], we can write

H|b| <H2 | b7
:22,":1"‘71H|b7\
i=1
— o T
i=1
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The LLL algorithm

Proof of main theorem
(A) |pijl <3, 1<j<i<n (B) |b:> > (3 — 12, )b, ?

Q |bh| < 2% |x|, for all non-zero vectors x € L

— We just showed that |b;|? < 2771[b¥|?, for 1< j<i<n
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

Q |bh| < 2% |x|, for all non-zero vectors x € L

— We just showed that |b;|? < 2771[b¥|?, for 1< j<i<n

1 1
o Write x = Zsjbj = Z tjb;,
= i—1

s; € Z, tj € R, and i the largest index having t; # 0
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

Q |bh| < 2% |x|, for all non-zero vectors x € L

— We just showed that |b;|? < 2771[b¥|?, for 1< j<i<n

1 1
o Write x = Zsjbj = Z tjbf,
j=1 j=1
s; € Z, tj € R, and i the largest index having t; # 0

@ The RHS equality is

i—1

X = ti-bf+ti_1-bf - Ft1-b) =t (b,- - Z/J,,'7kb7>+t,'_1 (.)+ ..
k=1

so that t; = s;
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The LLL algorithm

Proof of main theorem

(A) lpijl < 3. 1<j<i<n (B) b} = (3 — w7 ;_1)Ib} 4l

Q |bi| < 2"z . x|, for all non-zero vectors x € L

— We just showed that |b;|2 < 2/71|bf|2, for 1 <j<i<n
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

Q |bi| < 2"z . x|, for all non-zero vectors x € L

— We just showed that |b;|2 < 2/71|bf|2, for 1 <j<i<n

@ Since t; € Z, then
x> > t; - |bf [ > |b}[?

= |by2 < 27 b2 < 27 xf?
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The LLL algorithm

Proof of main theorem

(A) lpijl < 5. 1<j<i<n  (B) b = (3 —miy)biyf?

Q |bi| < 2"z . x|, for all non-zero vectors x € L

— We just showed that |b;|? < 2/71[bf|2, for 1< j<i<n

@ Since t; € Z, then
x> > t; - |bf [ > |b}[?

= [by|* < 2" Hbf|* < 27|
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The LLL algorithm

Proof of main theorem

(A) |pijl <3, 1<j<i<n (B) b2 > (3 — 12, ))Ibr 4P
Q |bi| < 2"z . x|, for all non-zero vectors x € L

— This is the 29(" approximation bound we promised earlier!
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The LLL algorithm

Idea behind the algorithm

@ an “induction”-style algorithm, where the index k is a moving target
@ begin with k =2
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The LLL algorithm

Idea behind the algorithm

@ an “induction”-style algorithm, where the index k is a moving target
@ begin with k =2
@ ensure that (A) is satisfied for all b; with index i < k

1
(A) M;JSE forl1 <j<i<k
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The LLL algorithm

Idea behind the algorithm

@ an “induction”-style algorithm, where the index k is a moving target
@ begin with k =2

@ ensure that (A) is satisfied for all b; with index i < k

@ ensure that (B) is satisfied for by and by_1

oo (3 *
®) 162> (3 - i) b3
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The LLL algorithm

Idea behind the algorithm

@ an “induction”-style algorithm, where the index k is a moving target
@ begin with k =2

@ ensure that (A) is satisfied for all b; with index i < k

@ ensure that (B) is satisfied for by and by_1

°

increment k until we reach k = n

oo (3 *
®) 162> (3 - i) b3
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The LLL algorithm

The gory details

LLL-REDUCE(L) :
// Outputs basis bj,..., b, with short b;

k:=2
while k<n
A-SAT (k)
1t C bR < (3= ey 15 P )
SWAP (by, bk_1)
k= max(2,k —1)
else
k=k+1
end
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The LLL algorithm

The gory details

A-SAT (k) :
// Invariant: (A) is satisfied for j; with ¢ <j <k
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The LLL algorithm

The gory details

A-SAT (k) :
// Invariant: (A) is satisfied for j; with ¢ <j <k

for {=k—-1 to 1

ro= [k

bk = bk —r- bg

Pk = Hke— T
end
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The gory details

A-SAT (k) :
// Invariant: (A) is satisfied for j; with ¢ <j <k

for {=k—-1 to 1

ro= [k

bk = bk —r- b@

Pk = Hke— T
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The LLL algorithm

The gory details

A-SAT (k) :
// Invariant: (A) is satisfied for j; with ¢ <j <k

for {=k—-1 to 1

ro= [pke
bk = bk —r- bg
Mk = Hke — T
end
<bk7 b;>
= Bk = T e
<bzv b£>
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The LLL algorithm

The gory details

A-SAT (k) :
// Invariant: (A) is satisfied for j; with ¢ <j <k

for {=k—-1 to 1

r=[pke]
bk = bk —r- bg
Mk = Hke — T
end
(b, by)
— Mk,f = * *
(b}, b})
(e, = (b —r - by, b}) _ (b, by) — r- (b}, by)
ot (b, b}) (b, by)
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The LLL algorithm

The gory details

A-SAT (k) :
// Invariant: (A) is satisfied for j; with ¢ <j <k

for {=k—-1 to 1

r=[pke]
bk = bk —r- bg
Mk = Hke — T
end
(b, by)
- Mk,f = * *
(b}, b})
o b beby) (b by) — 7 {7 )
ot (b, b}) (b, by)

1
= ke — SE v
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The LLL algorithm

The gory details

LLL-REDUCE(L) :

// Outputs basis by,...,b, with short b;
k:=2
while k<n
A-SAT (k)
12 CIB2 = (3= 1 s) I6fs )
k=k+1
else

SWAP (by, bk_1)
k := max(2,k — 1)
end
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The LLL algorithm

The gory details

LLL-REDUCE(L) :
// Outputs basis by,...,b, with short b;

k:=2
while k<n
A-SAT (k)
18 C 16 = (3= 1) 1Bia2 )
k=k+1
else

SWAP (by, bk_1)
k := max(2,k — 1)
end
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The LLL algorithm

The gory details

LLL-REDUCE(L) :

// Outputs basis by,...,b, with short b;
k:=2
while k<n
A-SAT (k)
12 CIB2 = (3= 1 s) 16 )
ki=k+1
else

SWAP (by, bk_1)
k := max(2,k — 1)
end

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 14 /20



The LLL algorithm

The gory details

LLL-REDUCE(L) :

// Outputs basis by,...,b, with short b;
k:=2
while k<n
A-SAT (k)
12 CIB2 = (3= 1 s) 16 )
k=k+1
else

SWAP (by, bk_1)
k := max(2,k — 1)
end

e condition (A) may no longer be satisfied!
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The LLL algorithm

The gory details

LLL-REDUCE(L) :

// Outputs basis by,...,b, with short b;
k:=2
while k<n
A-SAT (k)
12 CIB2 = (3= 1 s) 16 )
k=k+1
else

SWAP (by, bk_1)
k == max(2,k — 1)
end

e condition (A) may no longer be satisfied!
@ backtrack to fix
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The LLL algorithm

Correctness of the algorithm

Correctness is “obvious!”
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Upon termination:
e Condition (A) is met
e Condition (B) is met

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 15 / 20



The LLL algorithm

Correctness of the algorithm

Correctness is “obvious!”

Upon termination:
e Condition (A) is met
e Condition (B) is met

@ = The basis is LLL-reduced, so b; within 2%1 of the shortest vector
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The LLL algorithm

Termination of the algorithm

@ Less “obvious”: whether LLL ever stops!
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The LLL algorithm

Termination of the algorithm

@ Less “obvious”: whether LLL ever stops!

@ We investigate with a potential function argument

Define

d; = det(L(by, ..., b,'))2 = H |bf|2
I<j<i
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The LLL algorithm

Termination of the algorithm

@ Less “obvious”: whether LLL ever stops!

@ We investigate with a potential function argument

Define
d; = det(L(by, ..., b,'))2 = H |bf|2
1< <i
and n
i=1
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The LLL algorithm

Termination of the algorithm

n n i

D=]]d = ]I |b¥ |2
1

i=1 i=1 \Jj=

@ The A-SAT() routine never affects the values of |b}|?
@ Only the SWAP() routine affects the values of |b?|?
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The LLL algorithm

Termination of the algorithm

n n i

p-1[¢ - T[T 157

=1 i=1 \j=1

@ The A-SAT() routine never affects the values of |b}|?
@ Only the SWAP() routine affects the values of |b?|?
o Observe that d; is unaffected if i # (k — 1):
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@ The A-SAT() routine never affects the values of |b}|?
@ Only the SWAP() routine affects the values of |b?|?
o Observe that d; is unaffected if i # (k — 1):
o i < (k —1): no basis vectors in L(by, ..., b;) are changed
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The LLL algorithm

Termination of the algorithm

n n i

D=]]d = ]I |b¥ |2
1

i=1 i=1 \Jj=

@ The A-SAT() routine never affects the values of |b}|?
@ Only the SWAP() routine affects the values of |b?|?
o Observe that d; is unaffected if i # (k — 1):
o i < (k —1): no basis vectors in L(by, ..., b;) are changed
o> (k— 1): L(bl,...,bkfl,bk,...,b,') = L(bl,...,bk,bkfl,...,b,')

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 17 /20



The LLL algorithm

Termination of the algorithm

o-Tla - 1T (117

=1 i=1 \j=1

@ The A-SAT() routine never affects the values of |b}|?
@ Only the SWAP() routine affects the values of |b?|?
o Observe that d; is unaffected if i # (k — 1):
o i < (k —1): no basis vectors in L(by, ..., b;) are changed
o> (k— 1): L(bl,...,bk_l,bk,...,b,') = L(bl,...,bk,bk_l,...,b,')
@ However when i = (k — 1), then

L(by, ..., bx—2, bx—1)
becomes
L(by,..., bk_2, bk)
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The LLL algorithm

Termination of the algorithm

n n i

D=]]d = ]I |b¥ |2
1

i=1 i=1 \Jj=

Say D is pre-swap, D’ is post-swap, then:
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The LLL algorithm

Termination of the algorithm

b= H H\bf\2
i=1

i=1 =

Say D is pre-swap, D’ is post-swap, then:

o (T2 d) -det(L(br, ... o, b))

D (T2 d) - det(L(br, . bxa, bi1))?
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The LLL algorithm

Termination of the algorithm

b= H H\bf\2
i=1

i=1 =
Say D is pre-swap, D’ is post-swap, then:

o (I17d) - det(L(br,.... o, bi)?

D ([17dr) - det(L(br, ., baa, by 1))?
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The LLL algorithm

Termination of the algorithm

H 11157
i=1

i=1 \j=1
Say D is pre-swap, D’ is post-swap, then:
pr (1127 d) - det(Llby, ... bia, b))
D (11127 ) - det(L(bn, .., bia, by_1))?
(152 18712) - b2
[ 16712
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The LLL algorithm

Termination of the algorithm

H 11157
i=1

i=1 \j=1
Say D is pre-swap, D’ is post-swap, then:
pr (1127 d) - det(Llby, ... bia, b))
D (11127 ) - det(L(bn, .., bia, by_1))?
(T2 18712) - 162
[T 16712
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The LLL algorithm

Termination of the algorithm

b= H H\bf\2
i=1

i=1 =

Say D is pre-swap, D’ is post-swap, then:

o (1170 - det(L(br,.... o, bi)?
D (157 dr) - det(L(br, ., bxa, b 1))?
(T2 15717) - 7P
[T} 1572
|bil?
b4 ?
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The LLL algorithm

Termination of the algorithm

D' |l

D b ]2

Recall the LLL conditions:
A)|,LL,-J-|§% forl1<j<i<n

B) 167 1* = (3 — pii—1®) b}
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The LLL algorithm

Termination of the algorithm

D' |l

D b ]2

Recall the LLL conditions:
A) |pijl <3 forl<j<i<n

B) 671> > (3 — pii1?)|bj_y/?
Taken together, they imply

b [?
b7 412~

3
4
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The LLL algorithm

Termination of the algorithm

D' |l

D b ]2

Recall the LLL conditions:
A)|,LL,-J-|§% forl1<j<i<n

B) 671> > (3 — pii—1)|bj_y/?
Taken together, they imply

* |2
|bj_,2 4 4
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The LLL algorithm

Termination of the algorithm

D' |l

D b ]2

Recall the LLL conditions:
A)|,LL,-J-|§% forl1<j<i<n

B) 167 1* = (3 — pii—1®) b}

Taken together, they imply

* |2
|bI| S § SO D/ S
i, >~ 4
After m swaps, this becomes
0< D™ < (3/4)™.D

-D

W
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The LLL algorithm

Complexity analysis

o Complexity of LLL on an n-dimensional lattice is O(n® log®(B)),
where B > |bj|?> for 1 < i <n

@ This also assumes operating on integers of bit-length O(nlog(B))
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@ This also assumes operating on integers of bit-length O(nlog(B))

@ Replacing Gram-Schmidt by Householder orthogonalization gives
small improvements
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The LLL algorithm

Complexity analysis

o Complexity of LLL on an n-dimensional lattice is O(n® log®(B)),
where B > |bj|?> for 1 < i <n

@ This also assumes operating on integers of bit-length O(nlog(B))

@ Replacing Gram-Schmidt by Householder orthogonalization gives
small improvements

o Nguyen, Stehle (2007) modify LLL to run in O(n®log B + n°log? B)),
which is only quadratic w.r.t log B
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