
The Lenstra-Lenstra-Lovasz basis reduction algorithm for
lattices

Jeremy Porter

CSCI-6101

April 4, 2011

Jeremy Porter (CSCI-6101) The Lenstra-Lenstra-Lovasz basis reduction algorithm for latticesApril 4, 2011 1 / 20

Lattice basics
Concepts & definitions

A lattice in Rn is a free Z-module of rank n.

Better yet: a lattice L is a subgroup of n-dimensional space such that

L =

{
n∑

i=1

aibi : ai ∈ Z

}
= L(b1, . . . , bn)

where the bi are linearly independent and form the basis of the lattice.

In other words, L is “almost” a vector space on Rn, except with
coefficients limited to Z.

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 2 / 20

Lattice basics
Concepts & definitions

A lattice in Rn is a free Z-module of rank n.

Better yet: a lattice L is a subgroup of n-dimensional space such that

L =

{
n∑

i=1

aibi : ai ∈ Z

}
= L(b1, . . . , bn)

where the bi are linearly independent and form the basis of the lattice.

In other words, L is “almost” a vector space on Rn, except with
coefficients limited to Z.

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 2 / 20

Lattice basics
Concepts & definitions

A lattice in Rn is a free Z-module of rank n.

Better yet: a lattice L is a subgroup of n-dimensional space such that

L =

{
n∑

i=1

aibi : ai ∈ Z

}
= L(b1, . . . , bn)

where the bi are linearly independent and form the basis of the lattice.

In other words, L is “almost” a vector space on Rn, except with
coefficients limited to Z.

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 2 / 20

Lattice basics
Concepts & definitions

Lattices form tilings, diving Rn into infinitely many copies of its
fundamental region

The basis of a lattice is not unique; however, the volume vol(L) of its
fundamental region is independent of choice of basis

Also independent of basis is the determinant of the lattice,
det(L) =vol(L)2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 3 / 20

Lattice basics
Concepts & definitions

Lattices form tilings, diving Rn into infinitely many copies of its
fundamental region

The basis of a lattice is not unique; however, the volume vol(L) of its
fundamental region is independent of choice of basis

Also independent of basis is the determinant of the lattice,
det(L) =vol(L)2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 3 / 20

Lattice basics
Concepts & definitions

Lattices form tilings, diving Rn into infinitely many copies of its
fundamental region

The basis of a lattice is not unique; however, the volume vol(L) of its
fundamental region is independent of choice of basis

Also independent of basis is the determinant of the lattice,
det(L) =vol(L)2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 3 / 20

Lattice basics
Typical problems on lattices

Given a basis b1, . . . , bn for an n-dimensional lattice L...

Closest Vector Problem (CVP): given a target t ∈ Rn, find ` ∈ L
closest to t

Shortest Vector Problem (SVP): find the ` ∈ L of minimum, non-zero
length

Shortest Independent Vector Problem (SIVP): find n linearly
independent `i ∈ L with the smallest maxi ||`i ||

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 4 / 20

Lattice basics
Typical problems on lattices

Given a basis b1, . . . , bn for an n-dimensional lattice L...

Closest Vector Problem (CVP): given a target t ∈ Rn, find ` ∈ L
closest to t

Shortest Vector Problem (SVP): find the ` ∈ L of minimum, non-zero
length

Shortest Independent Vector Problem (SIVP): find n linearly
independent `i ∈ L with the smallest maxi ||`i ||

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 4 / 20

Lattice basics
Typical problems on lattices

Given a basis b1, . . . , bn for an n-dimensional lattice L...

Closest Vector Problem (CVP): given a target t ∈ Rn, find ` ∈ L
closest to t

Shortest Vector Problem (SVP): find the ` ∈ L of minimum, non-zero
length

Shortest Independent Vector Problem (SIVP): find n linearly
independent `i ∈ L with the smallest maxi ||`i ||

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 4 / 20

Lattice basics
Typical problems on lattices

Given a basis b1, . . . , bn for an n-dimensional lattice L...

Closest Vector Problem (CVP): given a target t ∈ Rn, find ` ∈ L
closest to t

Shortest Vector Problem (SVP): find the ` ∈ L of minimum, non-zero
length

Shortest Independent Vector Problem (SIVP): find n linearly
independent `i ∈ L with the smallest maxi ||`i ||

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 4 / 20

Lattice basics
Typical problems on lattices

(Ajtai, 1996)
the SVP is provably NP-Hard

(Aharonov & Regev, 2005)
approximating the SVP is in NP ∩ co-NP

(Ajtai & Dwork, 1997)
the SVP is used to construct cryptosystems with
worst-case/average-case equivalence

(Lenstra, Lenstra, & Lovasz, 1982)
the LLL algorithm can be used as an approximation algorithm for
solving the SVP within a factor of 2O(n) in polynomial time

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 5 / 20

Lattice basics
Typical problems on lattices

(Ajtai, 1996)
the SVP is provably NP-Hard

(Aharonov & Regev, 2005)
approximating the SVP is in NP ∩ co-NP

(Ajtai & Dwork, 1997)
the SVP is used to construct cryptosystems with
worst-case/average-case equivalence

(Lenstra, Lenstra, & Lovasz, 1982)
the LLL algorithm can be used as an approximation algorithm for
solving the SVP within a factor of 2O(n) in polynomial time

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 5 / 20

Lattice basics
Typical problems on lattices

(Ajtai, 1996)
the SVP is provably NP-Hard

(Aharonov & Regev, 2005)
approximating the SVP is in NP ∩ co-NP

(Ajtai & Dwork, 1997)
the SVP is used to construct cryptosystems with
worst-case/average-case equivalence

(Lenstra, Lenstra, & Lovasz, 1982)
the LLL algorithm can be used as an approximation algorithm for
solving the SVP within a factor of 2O(n) in polynomial time

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 5 / 20

Lattice basics
Typical problems on lattices

(Ajtai, 1996)
the SVP is provably NP-Hard

(Aharonov & Regev, 2005)
approximating the SVP is in NP ∩ co-NP

(Ajtai & Dwork, 1997)
the SVP is used to construct cryptosystems with
worst-case/average-case equivalence

(Lenstra, Lenstra, & Lovasz, 1982)
the LLL algorithm can be used as an approximation algorithm for
solving the SVP within a factor of 2O(n) in polynomial time

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 5 / 20

Gram-Schmidt orthogonalization
A review of linear algebra

Given a basis b1, . . . , bn, we inductively define

b∗i = bi −
i−1∑
j=1

µi ,jb
∗
j , where µi ,j =

〈bi , b∗j 〉
〈b∗j , b∗j 〉

So for instance:

b∗1 = b1

b∗2 = b2 −
〈b2, b∗1〉
〈b∗1, b∗1〉

b∗1

b∗3 = b3 −
〈b3, b∗2〉
〈b∗2, b∗2〉

b∗2 −
〈b3, b∗1〉
〈b∗1, b∗1〉

b∗1

...

Orthogonal basis ↑

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 6 / 20

Gram-Schmidt orthogonalization
A review of linear algebra

Given a basis b1, . . . , bn, we inductively define

b∗i = bi −
i−1∑
j=1

µi ,jb
∗
j , where µi ,j =

〈bi , b∗j 〉
〈b∗j , b∗j 〉

So for instance:

b∗1 = b1

b∗2 = b2 −
〈b2, b∗1〉
〈b∗1, b∗1〉

b∗1

b∗3 = b3 −
〈b3, b∗2〉
〈b∗2, b∗2〉

b∗2 −
〈b3, b∗1〉
〈b∗1, b∗1〉

b∗1

...

Orthogonal basis ↑

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 6 / 20

Gram-Schmidt orthogonalization
A review of linear algebra

Given a basis b1, . . . , bn, we inductively define

b∗i = bi −
i−1∑
j=1

µi ,jb
∗
j , where µi ,j =

〈bi , b∗j 〉
〈b∗j , b∗j 〉

So for instance:

b∗1 = b1

b∗2 = b2 −
〈b2, b∗1〉
〈b∗1, b∗1〉

b∗1

b∗3 = b3 −
〈b3, b∗2〉
〈b∗2, b∗2〉

b∗2 −
〈b3, b∗1〉
〈b∗1, b∗1〉

b∗1

...

Orthogonal basis ↑

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 6 / 20

Gram-Schmidt orthogonalization
A review of linear algebra

Given a basis b1, . . . , bn, we inductively define

b∗i = bi −
i−1∑
j=1

µi ,jb
∗
j , where µi ,j =

〈bi , b∗j 〉
〈b∗j , b∗j 〉

So for instance:

b∗1 = b1

b∗2 = b2 −
〈b2, b∗1〉
〈b∗1, b∗1〉

b∗1

b∗3 = b3 −
〈b3, b∗2〉
〈b∗2, b∗2〉

b∗2 −
〈b3, b∗1〉
〈b∗1, b∗1〉

b∗1

...

Orthogonal basis ↑

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 6 / 20

Gram-Schmidt orthogonalization
A review of linear algebra

Given a basis b1, . . . , bn, we inductively define

b∗i = bi −
i−1∑
j=1

µi ,jb
∗
j , where µi ,j =

〈bi , b∗j 〉
〈b∗j , b∗j 〉

So for instance:

b∗1 = b1

b∗2 = b2 −
〈b2, b∗1〉
〈b∗1, b∗1〉

b∗1

b∗3 = b3 −
〈b3, b∗2〉
〈b∗2, b∗2〉

b∗2 −
〈b3, b∗1〉
〈b∗1, b∗1〉

b∗1

...

Orthogonal basis ↑

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 6 / 20

Gram-Schmidt orthogonalization
A review of linear algebra

Given a basis b1, . . . , bn, we inductively define

b∗i = bi −
i−1∑
j=1

µi ,jb
∗
j , where µi ,j =

〈bi , b∗j 〉
〈b∗j , b∗j 〉

So for instance:

b∗1 = b1

b∗2 = b2 −
〈b2, b∗1〉
〈b∗1, b∗1〉

b∗1

b∗3 = b3 −
〈b3, b∗2〉
〈b∗2, b∗2〉

b∗2 −
〈b3, b∗1〉
〈b∗1, b∗1〉

b∗1

...

Orthogonal basis ↑
Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 6 / 20

Hadamard’s inequality

Theorem (Hadamard)

For an n-dimensional lattice L with basis vectors b1, . . . , bn and
determinant d(L),

d(L) ≤
n∏

i=1

|bi |.

Corollary

If the basis is orthogonal, say b∗1, . . . , b
∗
n, then this becomes the equality

d(L) =
n∏

i=1

|b∗i |.

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 7 / 20

Hadamard’s inequality

Theorem (Hadamard)

For an n-dimensional lattice L with basis vectors b1, . . . , bn and
determinant d(L),

d(L) ≤
n∏

i=1

|bi |.

Corollary

If the basis is orthogonal, say b∗1, . . . , b
∗
n, then this becomes the equality

d(L) =
n∏

i=1

|b∗i |.

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 7 / 20

The LLL algorithm
Two LLL conditions

A) |µi ,j | ≤
1

2
for 1 ≤ j < i ≤ n

B) |b∗i + µi ,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2 for 1 < i ≤ n

B) |b∗i |2 ≥ (
3

4
− µ2i ,i−1)|b∗i−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 8 / 20

The LLL algorithm
Two LLL conditions

A) |µi ,j | ≤
1

2
for 1 ≤ j < i ≤ n

B) |b∗i + µi ,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2 for 1 < i ≤ n

B) |b∗i |2 ≥ (
3

4
− µ2i ,i−1)|b∗i−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 8 / 20

The LLL algorithm
Two LLL conditions

A) |µi ,j | ≤
1

2
for 1 ≤ j < i ≤ n

B) |b∗i + µi ,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2 for 1 < i ≤ n

B) |b∗i |2 ≥ (
3

4
− µ2i ,i−1)|b∗i−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 8 / 20

The LLL algorithm
Two LLL conditions

A) |µi ,j | ≤
1

2
for 1 ≤ j < i ≤ n

B) |b∗i + µi ,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2 for 1 < i ≤ n

B) |b∗i |2 ≥ (
3

4
− µ2i ,i−1)|b∗i−1|2

→ Recall that the triangle inequality implies:

|b∗i |2 + |µi ,i−1b∗i−1|2 ≥ |b∗i + µi ,i−1b
∗
i−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 8 / 20

The LLL algorithm
Two LLL conditions

A) |µi ,j | ≤
1

2
for 1 ≤ j < i ≤ n

B) |b∗i + µi ,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2 for 1 < i ≤ n

B) |b∗i |2 ≥ (
3

4
− µ2i ,i−1)|b∗i−1|2

→ [Micciancio, 2010] The 3
4 factor may be replaced by δ ∈ (14 , 1)

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 8 / 20

The LLL algorithm
Main theorem

Theorem (Lenstra, Lenstra, Lovasz)

A lattice with basis vectors b1, . . . , bn satisfying both conditions (A) and
(B) has the following properties:

d(L) ≤
n∏

i=1

|bi | ≤ 2
n(n−1)

4 · d(L)

|b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 9 / 20

The LLL algorithm
Main theorem

Theorem (Lenstra, Lenstra, Lovasz)

A lattice with basis vectors b1, . . . , bn satisfying both conditions (A) and
(B) has the following properties:

d(L) ≤
n∏

i=1

|bi | ≤ 2
n(n−1)

4 · d(L)

|b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 9 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)
The LHS is the Hadamard inequality.

Thus, by induction

|b∗j |2 ≤ 2i−j |b∗i |2, for i ≥ j .

Now Gram-Schmidt gives

|bi |2 ≤ |b∗i |2 +
i−1∑
j=1

1

4
2i−j |b∗i |2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)
The RHS is from the two LLL conditions. Taken together,

|b∗i |2 ≥
1

2
|b∗i−1|2

Thus, by induction

|b∗j |2 ≤ 2i−j |b∗i |2, for i ≥ j .

Now Gram-Schmidt gives

|bi |2 ≤ |b∗i |2 +
i−1∑
j=1

1

4
2i−j |b∗i |2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)
Thus, by induction

|b∗j |2 ≤ 2i−j |b∗i |2, for i ≥ j .

Now Gram-Schmidt gives

|bi |2 ≤ |b∗i |2 +
i−1∑
j=1

1

4
2i−j |b∗i |2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)
Thus, by induction

|b∗j |2 ≤ 2i−j |b∗i |2, for i ≥ j .

Now Gram-Schmidt gives

|bi |2 ≤ |b∗i |2 +
i−1∑
j=1

1

4
2i−j |b∗i |2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)

|bi |2 ≤ |b∗i |2 +
i−1∑
j=1

1

4
2i−j |b∗i |2 = |b∗i |2

1 +
1

4

i−1∑
j=1

2j



= |b∗i |2
(

1 +
1

4

[
2i − 1

2− 1
− 1

])
= |b∗i |2

(
1 +

1

4

[
2i − 2

])
≤ 2i−1 · |b∗i |2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)

|bi |2 ≤ |b∗i |2 +
i−1∑
j=1

1

4
2i−j |b∗i |2 = |b∗i |2

1 +
1

4

i−1∑
j=1

2j


= |b∗i |2

(
1 +

1

4

[
2i − 1

2− 1
− 1

])
= |b∗i |2

(
1 +

1

4

[
2i − 2

])
≤ 2i−1 · |b∗i |2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

1 d(L) ≤
∏n

i=1 |bi | ≤ 2
n(n−1)

4 · d(L)

With |bi |2 ≤ 2i−1 · |b∗i |2 and |bi | ≤ 2
i−1
2 · |b∗i |, we can write

n∏
i=1

|bi | ≤
n∏

i=1

2
i−1
2 · |b∗i |

= 2
∑n

i=1
i−1
2

n∏
i=1

|b∗i |

= 2
n(n−1)

4

n∏
i=1

|b∗i |

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

2 |b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

→ We just showed that |bj |2 ≤ 2i−1|b∗i |2, for 1 ≤ j ≤ i ≤ n

Write x =
i∑

j=1

sjbj =
i∑

j=1

tjb
∗
j ,

sj ∈ Z, tj ∈ R, and i the largest index having ti 6= 0

The RHS equality is

x = ti ·b∗i +ti−1·b∗i−1+· · ·+t1·b∗1 = ti

(
bi −

i−1∑
k=1

µi ,kb
∗
j

)
+ti−1 (. . .)+. . .

so that ti = si

→ This is the 2O(n) approximation bound we promised earlier!

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

2 |b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

→ We just showed that |bj |2 ≤ 2i−1|b∗i |2, for 1 ≤ j ≤ i ≤ n

Write x =
i∑

j=1

sjbj =
i∑

j=1

tjb
∗
j ,

sj ∈ Z, tj ∈ R, and i the largest index having ti 6= 0

The RHS equality is

x = ti ·b∗i +ti−1·b∗i−1+· · ·+t1·b∗1 = ti

(
bi −

i−1∑
k=1

µi ,kb
∗
j

)
+ti−1 (. . .)+. . .

so that ti = si

→ This is the 2O(n) approximation bound we promised earlier!

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

2 |b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

→ We just showed that |bj |2 ≤ 2i−1|b∗i |2, for 1 ≤ j ≤ i ≤ n

Write x =
i∑

j=1

sjbj =
i∑

j=1

tjb
∗
j ,

sj ∈ Z, tj ∈ R, and i the largest index having ti 6= 0

The RHS equality is

x = ti ·b∗i +ti−1·b∗i−1+· · ·+t1·b∗1 = ti

(
bi −

i−1∑
k=1

µi ,kb
∗
j

)
+ti−1 (. . .)+. . .

so that ti = si

→ This is the 2O(n) approximation bound we promised earlier!

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

2 |b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

→ We just showed that |bj |2 ≤ 2i−1|b∗i |2, for 1 ≤ j ≤ i ≤ n

Since ti ∈ Z, then
|x |2 ≥ ti · |b∗i |2 ≥ |b∗i |2

⇒ |b1|2 ≤ 2n−1|b∗i |2 ≤ 2n−1|x |2

→ This is the 2O(n) approximation bound we promised earlier!

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

2 |b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

→ We just showed that |bj |2 ≤ 2i−1|b∗i |2, for 1 ≤ j ≤ i ≤ n

Since ti ∈ Z, then
|x |2 ≥ ti · |b∗i |2 ≥ |b∗i |2

⇒ |b1|2 ≤ 2n−1|b∗i |2 ≤ 2n−1|x |2

→ This is the 2O(n) approximation bound we promised earlier!

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

2 |b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

→ We just showed that |bj |2 ≤ 2i−1|b∗i |2, for 1 ≤ j ≤ i ≤ n

Since ti ∈ Z, then
|x |2 ≥ ti · |b∗i |2 ≥ |b∗i |2

⇒ |b1|2 ≤ 2n−1|b∗i |2 ≤ 2n−1|x |2

→ This is the 2O(n) approximation bound we promised earlier!

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Proof of main theorem

(A) |µi ,j | ≤ 1
2 , 1 ≤ j < i ≤ n (B) |b∗i |2 ≥ (34 − µ

2
i ,i−1)|b∗i−1|2

2 |b1| ≤ 2
n−1
2 · |x |, for all non-zero vectors x ∈ L

→ This is the 2O(n) approximation bound we promised earlier!

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 10 / 20

The LLL algorithm
Idea behind the algorithm

an “induction”-style algorithm, where the index k is a moving target

begin with k = 2

ensure that (A) is satisfied for all bi with index i ≤ k

ensure that (B) is satisfied for bk and bk−1

increment k until we reach k = n

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 11 / 20

The LLL algorithm
Idea behind the algorithm

an “induction”-style algorithm, where the index k is a moving target

begin with k = 2

ensure that (A) is satisfied for all bi with index i ≤ k

ensure that (B) is satisfied for bk and bk−1

increment k until we reach k = n

(A) µi ,j ≤
1

2
for 1 ≤ j < i ≤ k

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 11 / 20

The LLL algorithm
Idea behind the algorithm

an “induction”-style algorithm, where the index k is a moving target

begin with k = 2

ensure that (A) is satisfied for all bi with index i ≤ k

ensure that (B) is satisfied for bk and bk−1

increment k until we reach k = n

(B) |b∗k |2 ≥
(

3

4
− µ2k,k−1

)
|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 11 / 20

The LLL algorithm
Idea behind the algorithm

an “induction”-style algorithm, where the index k is a moving target

begin with k = 2

ensure that (A) is satisfied for all bi with index i ≤ k

ensure that (B) is satisfied for bk and bk−1

increment k until we reach k = n

(B) |b∗k |2 ≥
(

3

4
− µ2k,k−1

)
|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 11 / 20

The LLL algorithm
The gory details

LLL-REDUCE(L):
// Outputs basis b1, . . . , bn with short b1

k := 2
while k ≤ n

A-SAT(k)
if(|b∗k |2 <

(
3
4 − µ

2
k,k−1

)
|b∗k−1|2)

SWAP(bk , bk−1)
k := max(2, k − 1)

else

k := k + 1
end

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 12 / 20

The LLL algorithm
The gory details

LLL-REDUCE(L):
// Outputs basis b1, . . . , bn with short b1

k := 2
while k ≤ n

A-SAT(k)
if(|b∗k |2 <

(
3
4 − µ

2
k,k−1

)
|b∗k−1|2)

SWAP(bk , bk−1)
k := max(2, k − 1)

else

k := k + 1
end

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 12 / 20

The LLL algorithm
The gory details

A-SAT(k):
// Invariant: (A) is satisfied for µk,j with ` < j < k

for ` = k − 1 to 1

r := dµk,`c
bk := bk − r · b`
µk,` := µk,` − r

end

→ µk,` =
〈bk , b∗` 〉
〈b∗` , b∗` 〉

µ′k,` :=
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk , b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉

= µk,` − r ≤ 1

2
X

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 13 / 20

The LLL algorithm
The gory details

A-SAT(k):
// Invariant: (A) is satisfied for µk,j with ` < j < k

for ` = k − 1 to 1

r := dµk,`c
bk := bk − r · b`
µk,` := µk,` − r

end

→ µk,` =
〈bk , b∗` 〉
〈b∗` , b∗` 〉

µ′k,` :=
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk , b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉

= µk,` − r ≤ 1

2
X

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 13 / 20

The LLL algorithm
The gory details

A-SAT(k):
// Invariant: (A) is satisfied for µk,j with ` < j < k

for ` = k − 1 to 1

r := dµk,`c
bk := bk − r · b`
µk,` := µk,` − r

end

→ µk,` =
〈bk , b∗` 〉
〈b∗` , b∗` 〉

µ′k,` :=
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk , b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉

= µk,` − r ≤ 1

2
X

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 13 / 20

The LLL algorithm
The gory details

A-SAT(k):
// Invariant: (A) is satisfied for µk,j with ` < j < k

for ` = k − 1 to 1

r := dµk,`c
bk := bk − r · b`
µk,` := µk,` − r

end

→ µk,` =
〈bk , b∗` 〉
〈b∗` , b∗` 〉

µ′k,` :=
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk , b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉

= µk,` − r ≤ 1

2
X

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 13 / 20

The LLL algorithm
The gory details

A-SAT(k):
// Invariant: (A) is satisfied for µk,j with ` < j < k

for ` = k − 1 to 1

r := dµk,`c
bk := bk − r · b`
µk,` := µk,` − r

end

→ µk,` =
〈bk , b∗` 〉
〈b∗` , b∗` 〉

µ′k,` :=
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk , b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉

= µk,` − r ≤ 1

2
X

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 13 / 20

The LLL algorithm
The gory details

A-SAT(k):
// Invariant: (A) is satisfied for µk,j with ` < j < k

for ` = k − 1 to 1

r := dµk,`c
bk := bk − r · b`
µk,` := µk,` − r

end

→ µk,` =
〈bk , b∗` 〉
〈b∗` , b∗` 〉

µ′k,` :=
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk , b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉

= µk,` − r ≤ 1

2
X

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 13 / 20

The LLL algorithm
The gory details

A-SAT(k):
// Invariant: (A) is satisfied for µk,j with ` < j < k

for ` = k − 1 to 1

r := dµk,`c
bk := bk − r · b`
µk,` := µk,` − r

end

→ µk,` =
〈bk , b∗` 〉
〈b∗` , b∗` 〉

µ′k,` :=
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk , b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉

= µk,` − r ≤ 1

2
X

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 13 / 20

The LLL algorithm
The gory details

LLL-REDUCE(L):
// Outputs basis b1, . . . , bn with short b1

k := 2
while k ≤ n

A-SAT(k)
if(|b∗k |2 ≥

(
3
4 − µ

2
k,k−1

)
|b∗k−1|2)

k := k + 1
else

SWAP(bk , bk−1)
k := max(2, k − 1)

end

condition (A) may no longer be satisfied!

backtrack to fix

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 14 / 20

The LLL algorithm
The gory details

LLL-REDUCE(L):
// Outputs basis b1, . . . , bn with short b1

k := 2
while k ≤ n

A-SAT(k)
if(|b∗k |2 ≥

(
3
4 − µ

2
k,k−1

)
|b∗k−1|2)

k := k + 1
else

SWAP(bk , bk−1)
k := max(2, k − 1)

end

condition (A) may no longer be satisfied!

backtrack to fix

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 14 / 20

The LLL algorithm
The gory details

LLL-REDUCE(L):
// Outputs basis b1, . . . , bn with short b1

k := 2
while k ≤ n

A-SAT(k)
if(|b∗k |2 ≥

(
3
4 − µ

2
k,k−1

)
|b∗k−1|2)

k := k + 1
else

SWAP(bk , bk−1)
k := max(2, k − 1)

end

condition (A) may no longer be satisfied!

backtrack to fix

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 14 / 20

The LLL algorithm
The gory details

LLL-REDUCE(L):
// Outputs basis b1, . . . , bn with short b1

k := 2
while k ≤ n

A-SAT(k)
if(|b∗k |2 ≥

(
3
4 − µ

2
k,k−1

)
|b∗k−1|2)

k := k + 1
else

SWAP(bk , bk−1)
k := max(2, k − 1)

end

condition (A) may no longer be satisfied!

backtrack to fix

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 14 / 20

The LLL algorithm
The gory details

LLL-REDUCE(L):
// Outputs basis b1, . . . , bn with short b1

k := 2
while k ≤ n

A-SAT(k)
if(|b∗k |2 ≥

(
3
4 − µ

2
k,k−1

)
|b∗k−1|2)

k := k + 1
else

SWAP(bk , bk−1)
k := max(2, k − 1)

end

condition (A) may no longer be satisfied!

backtrack to fix

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 14 / 20

The LLL algorithm
Correctness of the algorithm

Correctness is “obvious!”

Upon termination:

Condition (A) is met

Condition (B) is met

⇒ The basis is LLL-reduced, so b1 within 2
n−1
2 of the shortest vector

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 15 / 20

The LLL algorithm
Correctness of the algorithm

Correctness is “obvious!”

Upon termination:

Condition (A) is met

Condition (B) is met

⇒ The basis is LLL-reduced, so b1 within 2
n−1
2 of the shortest vector

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 15 / 20

The LLL algorithm
Correctness of the algorithm

Correctness is “obvious!”

Upon termination:

Condition (A) is met

Condition (B) is met

⇒ The basis is LLL-reduced, so b1 within 2
n−1
2 of the shortest vector

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 15 / 20

The LLL algorithm
Termination of the algorithm

Less “obvious”: whether LLL ever stops!

We investigate with a potential function argument

Define
di = det(L(b1, . . . , bi))2 =

∏
1≤ j ≤i

|b∗j |2

and

D =
n∏

i=1

di .

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 16 / 20

The LLL algorithm
Termination of the algorithm

Less “obvious”: whether LLL ever stops!

We investigate with a potential function argument

Define
di = det(L(b1, . . . , bi))2 =

∏
1≤ j ≤i

|b∗j |2

and

D =
n∏

i=1

di .

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 16 / 20

The LLL algorithm
Termination of the algorithm

Less “obvious”: whether LLL ever stops!

We investigate with a potential function argument

Define
di = det(L(b1, . . . , bi))2 =

∏
1≤ j ≤i

|b∗j |2

and

D =
n∏

i=1

di .

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 16 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


The A-SAT() routine never affects the values of |b∗i |2
Only the SWAP() routine affects the values of |b∗i |2

Observe that di is unaffected if i 6= (k − 1):

i < (k − 1): no basis vectors in L(b1, . . . , bi) are changed
i > (k − 1): L(b1, . . . , bk−1, bk , . . . , bi) = L(b1, . . . , bk , bk−1, . . . , bi)

However when i = (k − 1), then

L(b1, . . . , bk−2, bk−1)

becomes
L(b1, . . . , bk−2, bk)

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 17 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


The A-SAT() routine never affects the values of |b∗i |2
Only the SWAP() routine affects the values of |b∗i |2
Observe that di is unaffected if i 6= (k − 1):

i < (k − 1): no basis vectors in L(b1, . . . , bi) are changed
i > (k − 1): L(b1, . . . , bk−1, bk , . . . , bi) = L(b1, . . . , bk , bk−1, . . . , bi)

However when i = (k − 1), then

L(b1, . . . , bk−2, bk−1)

becomes
L(b1, . . . , bk−2, bk)

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 17 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


The A-SAT() routine never affects the values of |b∗i |2
Only the SWAP() routine affects the values of |b∗i |2
Observe that di is unaffected if i 6= (k − 1):

i < (k − 1): no basis vectors in L(b1, . . . , bi) are changed

i > (k − 1): L(b1, . . . , bk−1, bk , . . . , bi) = L(b1, . . . , bk , bk−1, . . . , bi)

However when i = (k − 1), then

L(b1, . . . , bk−2, bk−1)

becomes
L(b1, . . . , bk−2, bk)

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 17 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


The A-SAT() routine never affects the values of |b∗i |2
Only the SWAP() routine affects the values of |b∗i |2
Observe that di is unaffected if i 6= (k − 1):

i < (k − 1): no basis vectors in L(b1, . . . , bi) are changed
i > (k − 1): L(b1, . . . , bk−1, bk , . . . , bi) = L(b1, . . . , bk , bk−1, . . . , bi)

However when i = (k − 1), then

L(b1, . . . , bk−2, bk−1)

becomes
L(b1, . . . , bk−2, bk)

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 17 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


The A-SAT() routine never affects the values of |b∗i |2
Only the SWAP() routine affects the values of |b∗i |2
Observe that di is unaffected if i 6= (k − 1):

i < (k − 1): no basis vectors in L(b1, . . . , bi) are changed
i > (k − 1): L(b1, . . . , bk−1, bk , . . . , bi) = L(b1, . . . , bk , bk−1, . . . , bi)

However when i = (k − 1), then

L(b1, . . . , bk−2, bk−1)

becomes
L(b1, . . . , bk−2, bk)

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 17 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


Say D is pre-swap, D ′ is post-swap, then:

D ′

D
=

(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk))2(∏k−2

i=1 di

)
· det(L(b1, . . . , bk−2, bk−1))2

=

(∏k−2
j=1 |b∗j |2

)
· |b∗k |2∏k−1

j=1 |b∗j |2

=
|b∗k |2

|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 18 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


Say D is pre-swap, D ′ is post-swap, then:

D ′

D
=

(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk))2(∏k−2

i=1 di

)
· det(L(b1, . . . , bk−2, bk−1))2

=

(∏k−2
j=1 |b∗j |2

)
· |b∗k |2∏k−1

j=1 |b∗j |2

=
|b∗k |2

|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 18 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


Say D is pre-swap, D ′ is post-swap, then:

D ′

D
=

(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk))2(∏k−2

i=1 di

)
· det(L(b1, . . . , bk−2, bk−1))2

=

(∏k−2
j=1 |b∗j |2

)
· |b∗k |2∏k−1

j=1 |b∗j |2

=
|b∗k |2

|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 18 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


Say D is pre-swap, D ′ is post-swap, then:

D ′

D
=

(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk))2(∏k−2

i=1 di

)
· det(L(b1, . . . , bk−2, bk−1))2

=

(∏k−2
j=1 |b∗j |2

)
· |b∗k |2∏k−1

j=1 |b∗j |2

=
|b∗k |2

|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 18 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


Say D is pre-swap, D ′ is post-swap, then:

D ′

D
=

(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk))2(∏k−2

i=1 di

)
· det(L(b1, . . . , bk−2, bk−1))2

=

(∏k−2
j=1 |b∗j |2

)
· |b∗k |2∏k−1

j=1 |b∗j |2

=
|b∗k |2

|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 18 / 20

The LLL algorithm
Termination of the algorithm

D =
n∏

i=1

di =
n∏

i=1

 i∏
j=1

|b∗j |2


Say D is pre-swap, D ′ is post-swap, then:

D ′

D
=

(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk))2(∏k−2

i=1 di

)
· det(L(b1, . . . , bk−2, bk−1))2

=

(∏k−2
j=1 |b∗j |2

)
· |b∗k |2∏k−1

j=1 |b∗j |2

=
|b∗k |2

|b∗k−1|2

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 18 / 20

The LLL algorithm
Termination of the algorithm

D ′

D
=
|b∗k |2

|b∗k−1|2

Recall the LLL conditions:

A) |µi ,j | ≤ 1
2 for 1 ≤ j < i ≤ n

B) |b∗i |2 ≥ (34 − µi ,i−1
2)|b∗i−1|2

Taken together, they imply

|b∗i |2

|b∗i−1|2
≤ 3

4

so D ′ ≤ 3

4
· D

After m swaps, this becomes

0 ≤ D(m) ≤ (3/4)m · D

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 19 / 20

The LLL algorithm
Termination of the algorithm

D ′

D
=
|b∗k |2

|b∗k−1|2

Recall the LLL conditions:

A) |µi ,j | ≤ 1
2 for 1 ≤ j < i ≤ n

B) |b∗i |2 ≥ (34 − µi ,i−1
2)|b∗i−1|2

Taken together, they imply

|b∗i |2

|b∗i−1|2
≤ 3

4

so D ′ ≤ 3

4
· D

After m swaps, this becomes

0 ≤ D(m) ≤ (3/4)m · D

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 19 / 20

The LLL algorithm
Termination of the algorithm

D ′

D
=
|b∗k |2

|b∗k−1|2

Recall the LLL conditions:

A) |µi ,j | ≤ 1
2 for 1 ≤ j < i ≤ n

B) |b∗i |2 ≥ (34 − µi ,i−1
2)|b∗i−1|2

Taken together, they imply

|b∗i |2

|b∗i−1|2
≤ 3

4
so D ′ ≤ 3

4
· D

After m swaps, this becomes

0 ≤ D(m) ≤ (3/4)m · D

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 19 / 20

The LLL algorithm
Termination of the algorithm

D ′

D
=
|b∗k |2

|b∗k−1|2

Recall the LLL conditions:

A) |µi ,j | ≤ 1
2 for 1 ≤ j < i ≤ n

B) |b∗i |2 ≥ (34 − µi ,i−1
2)|b∗i−1|2

Taken together, they imply

|b∗i |2

|b∗i−1|2
≤ 3

4
so D ′ ≤ 3

4
· D

After m swaps, this becomes

0 ≤ D(m) ≤ (3/4)m · D

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 19 / 20

The LLL algorithm
Complexity analysis

Complexity of LLL on an n-dimensional lattice is O(n6 log3(B)),
where B ≥ |bi |2 for 1 ≤ i ≤ n

This also assumes operating on integers of bit-length O(n log(B))

Replacing Gram-Schmidt by Householder orthogonalization gives
small improvements

Nguyen, Stehlè (2007) modify LLL to run in O(n6 logB + n5 log2 B)),
which is only quadratic w.r.t logB

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 20 / 20

The LLL algorithm
Complexity analysis

Complexity of LLL on an n-dimensional lattice is O(n6 log3(B)),
where B ≥ |bi |2 for 1 ≤ i ≤ n

This also assumes operating on integers of bit-length O(n log(B))

Replacing Gram-Schmidt by Householder orthogonalization gives
small improvements

Nguyen, Stehlè (2007) modify LLL to run in O(n6 logB + n5 log2 B)),
which is only quadratic w.r.t logB

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 20 / 20

The LLL algorithm
Complexity analysis

Complexity of LLL on an n-dimensional lattice is O(n6 log3(B)),
where B ≥ |bi |2 for 1 ≤ i ≤ n

This also assumes operating on integers of bit-length O(n log(B))

Replacing Gram-Schmidt by Householder orthogonalization gives
small improvements

Nguyen, Stehlè (2007) modify LLL to run in O(n6 logB + n5 log2 B)),
which is only quadratic w.r.t logB

Jeremy Porter (CSCI-6101) The LLL basis reduction algorithm April 4, 2011 20 / 20

